
MOVING TO GIT
IMPLEMENT GIT TO IMPROVE COLLABORATION AND SHIP FASTER

WHAT'S INSIDE?
BUSINESS ACCELERATED BY SOFTWARE

 » Modern Development, Modern Tools

FROM CENTRALIZED TO DISTRIBUTED VERSION CONTROL
 » Looking Back: Centralized Version Control Systems

 » Looking Forward: Distributed Version Control Systems

WHY GIT?
 » Collaboration & Code Quality

 » Cheaper Branching

 » Easier Merging

 » Reduced Costs

CHOOSING A GIT MANAGEMENT SOLUTION

 » What to consider when choosing a Git management solution

 » Integration with other tools

 » Cost

GETTING STARTED

ABOUT GITLAB

BUSINESS ACCELERATED
BY SOFTWARE
Technology has the power to change the world. Whether it’s software for

a critical medical device or an app that can detect your running speed,

technology is constantly changing the way we interact with the world around

us. This transformation in the way people live and communicate has had a

profound effect on the way people interact with brands, both personally and

professionally.

“Software is eating the world1,” and transforming business in its wake. In a world

where even books are digital, building great, reliable software is core to every

business. Long-established brands are digitizing to mitigate risk of disruption.

Innovation and speed are a universal competitive advantage. The ability to

release often and quickly respond to customer feedback has a direct impact on

a brand’s ability to stay relevant. With all this rapid change, business executives

must ask themselves, “How can we phase out legacy software, keep up with the

pace and get ahead of the curve?”

Today’s software landscape demands an upgrade.

1 Why Software Is Eating the World. Andreessen, Marc, a16z.com

http://a16z.com/2016/08/20/why-software-is-eating-the-world/

MODERN DEVELOPMENT, MODERN TOOLS

Modern software is built differently. Lean, flexible, fast, and ready for the

cloud, modern software operations are regularly capitalizing on the newest

technologies and finding innovative solutions to delivering customer value fast

and efficiently.

To meet the expectations of a digitally transformed economy, more enterprise

businesses are evolving to adopt modern tools. The International Data

Corporation (IDC) has estimated that by the end of 2017, two-thirds of the CEOs

of Global 2000 Enterprises will have digital transformation at the center of their

corporate strategy, and that by 2020, more than 30 percent of legacy IT vendors

will not exist2.

Why the dramatic shift?
As we’ve learned from some of the earliest disruptive companies (Amazon,

Netflix, Facebook), business is software. This means that a company’s

development and IT functions must adapt and respond to the needs of the

business, including revenue targets and customer engagement and satisfaction.

To keep up with this digital transformation, software development teams

have to change how they work — from shifting from monolith applications

to microservices and releasing frequently to agile development and DevOps.

Unfortunately, the legacy systems of the past simply were not built to support

the collaborative and distributed workflows the modern developer needs.

Upgrading your source code management solution from a centralized system

to a distributed version control system (DVCS) is the first step toward building a

flexible working environment that can support modern development teams.

2 5 IT industry predictions for 2016 from Forrester and IDC. Golden, Bernard, CIO.com

Traditional Software Development Modern Software Development

Annual releases Frequent releases

Siloed teams Cross-functional teams

Team-defined tooling Tool standardization

Manual configurations Infrastructure as code

Manual test & release Automated test & release

Monolith Microservices

By 2020, more than 30% of
legacy IT vendors will not exist

http://www.cio.com/article/3006976/it-industry/5-it-industry-predictions-for-2016-from-forrester-and-idc.html

FROM CENTRALIZED TO
DISTRIBUTED VERSION CONTROL
Over the last decade, distributed version control systems, like Git, have gained

popularity and are regarded as the most important development tools by

developers. Distributed version control systems are different from centralized

systems because they don’t rely on a central server. Instead, DVC systems are

decentralized, meaning a complete copy and full history of a codebase is stored

in multiple repositories.

92% of developers say a
distributed version control
system, like Git, is the most

important tool for their
day-to-day work.

— 2016 GLOBAL DEVELOPER SURVEY

http://get.gitlab.com/global-developer-survey/

LOOKING BACK: CENTRALIZED VERSION
CONTROL SYSTEMS

Using a traditional, centralized model, development workflows must work with

a centralized version control or “legacy system” which prevents teams from

meeting the demands of releasing often and responding quickly to customer

feedback.

With a centralized version control system, almost all actions require access to a

central repository, usually located on a remote server. In order to see a history

of changes, create a tag, make a new branch and so on, developers require

a connection to that server. The drawback of this for enterprises is obvious:

that single, central server becomes a bottleneck as teams and projects grow,

blocking progress.

Although it can be challenging to migrate from a legacy system, the benefits

outweigh the costs, and you only have to do it once to reap the rewards. It’s

a decision that can drastically improve your team’s culture, productivity, and

modes of collaboration.

File

Computer A

File

Computer B

Central VCS Server

Version Database

Version 3

Version 2

Version 1

LOOKING FORWARD: DISTRIBUTED
VERSION CONTROL SYSTEMS

Distributed version control makes it easier to share, test, and merge changes

while maintaining a clean master version of your code. Using a DVCS, every

developer has the full history of the repository on their own machine.

With a clone of the repository stored locally, commits, merges and other

commands are much faster, with developers even able to work offline. But

speed and convenience aren’t the only advantages of using a DVCS: once

it’s established you’ll enjoy the benefits of improved collaboration, cheaper

branching, easier merging, a better workflow, and reduced costs, too.

Server Computer

Version Database

Version 3

Version 2

Version 1

File

Computer A

Version Database

Version 3

Version 2

Version 1

File

Computer A

Version Database

Version 3

Version 2

Version 1

WHY GIT?
Git is an open source, distributed version control system. It is purpose-built for

distributed development models, offering strong support for distributed and

remote teams, and non-linear development practices.

Since its inception in 2005, Git has grown to be the most popular version control

system for developers — 70 percent of the 64,000 developers who responded

to Stack Overflow’s 2017 Developer Survey are using Git, compared to only 9

percent who say they still use Subversion. Another study done by RhodeCode

validates the claim that Git is the version control system of choice, claiming:

 » Better collaboration & code quality

 » Cheaper branching

 » Easier merging

 » Reduced costs

Git is open source: it's free, secure, flexible and it has a large community

maintaining a high standard of quality. A study done by Black Duck Software

revealed that 78 percent of companies run at least part of their operations

on open source software and 55 percent say open source delivers superior

security3.

Enabling safe and reliable distributed development workflows at a low cost,

Git greatly improves team collaboration and can accelerate deployments and

release cycles. Adopting Git gives software development teams the competitive

edge they need in today’s hyper-digitalized and ever-transforming world.

3 Open source security is not as big of a concern as it once was. Francis, Ryan. CSOonline.com

MASTER

STAGING

PRODUCTION

TOPIC BRANCH
MERGE

REVIEW APP

! !

" #

" #

" $ " $

!

!

https://stackoverflow.com/insights/survey/2017
https://rhodecode.com/insights/version-control-systems-2016
http://www.csoonline.com/article/3033837/security/open-source-security-is-not-as-big-of-a-concern-as-it-once-was.html

Collaboration and Code Quality
Git is the first VCS to enable a truly modern workflow, making it easy and fast

to create, merge, and manage many branches. Feature branches, or branches

containing one feature or bug fix for their project, allow teams to iterate, discuss,

and perfect their code at the merge request stage, before their changes are

accepted into master. Git management solutions, like GitLab, encourage this

modern workflow.

By updating each other early and often, this workflow enables teams to collect

feedback regularly and integrate suggestions throughout the process.

Cheaper Branching
Git’s branching capabilities are one of the main reasons why Git has become

so popular. Developers can create a new branch and isolated environment to

work on new features, bug fixes, customer requests, or even just experiment on

something new at little to no cost.

Branching with Git is “cheap” because it is quick, easy, and doesn’t take up a lot

of space. Creating a new branch only requires a single command, and because

it’s distributed, no network connection needed—unlike Subversion and other

centralized version control systems. In older version control systems, branching

requires making a complete copy of all the code, making branching slow and

repetitive — risking multiple versions of the same software.

Easier Merging
Because of its cheap branching abilities, Git encourages developers to make

smaller commits, more often, making merging a lot easier and less scary. Before

merging to master, a developer can commit their code locally to ensure it works,

preserving the quality of the master code base.

When coupled with a source code management tool like GitLab, you can

enhance merging capabilities with a user interface that allows you to review

and comment on changes on branches before merging. At GitLab, we call this a

merge request and run continuous integration on every branch as an additional

quality gate to ensure everything that goes into the master code base works.

With GitLab branching and merging, you can even protect branches to prevent

merges that aren’t ready, and apply merge request approvals for an added layer

of security.

Reduced costs
Git on its own is open source and completely free. This also means you benefit

from the contributions of the open source community working on bug fixes

and feature improvements. Even if you choose a Git management solution (see

below), these are often a fraction of the price of licenses per user and the cost of

maintenance for legacy systems.

$
fast cost effective collaborative

https://docs.gitlab.com/ee/workflow/workflow.html#feature-branch-workflow?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git
https://docs.gitlab.com/ee/gitlab-basics/add-merge-request.html?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git

CHOOSING A GIT
MANAGEMENT SOLUTION
One of the cited drawbacks of Git is the lack of graphical user interface. However,

thanks to the open source community, there are a variety of management

solutions that are built on top of Git, like GitLab. With a Git management

solution, you can dramatically improve the user experience of Git. Git

management solutions offer a user interface for visualizing, managing, and

discovering your projects and repositories, access and security management,

and a UI for reviewing code changes. Working within the UI allows non-technical

team members to join the conversation also, so they can get to work on

promoting your next release or gathering feedback from customers.

A Git management solution can also offer enterprise-ready features that are

designed to simplify and secure the software development lifecycle for larger

organizations, such as time tracking, file locking, CI/CD and merge or pull

request approvals. Another advantage is the ability to integrate with modern

technology and processes to make the most of other tools and container

schedulers such as Kubernetes.

https://about.gitlab.com/features/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git

WHAT TO CONSIDER WHEN CHOOSING
A GIT MANAGEMENT SOLUTION
Hosting
Installing and customizing software on your own machines in your own data

center (on-premise) has several advantages. Firstly, you have full control over

company systems and the security of knowing everything is housed within

the walls of your own business. By not relying on a hosted service, you aren't

affected by their downtime which means no interruption to your own service.

The disadvantage of on-premise is that this places the burden of managing and

maintaining in-house servers on your organization, and you'll need a dedicated

IT team for that, otherwise you may find your customers growing frustrated with

your own downtime anyway.

Opting for a hosted service comes with benefits too: released from the

responsibility of managing and maintaining servers, you free up resources to

focus on delivering great service and a better product to your customers. The

risk here is that any downtime or data loss experienced by your cloud service

provider will impact on your own service. It’s up to you to weigh up which option

makes the most of your organization’s skills and resources.

Integration with Other Tools
Source code management is just one element of the software development

lifecycle. Your teams will most likely want other features such as issue tracking,

CI/CD, code review and collaboration tools. When choosing a Git management

solution it's important to find out first what other tools or features your teams

require, and whether the solution you're considering includes or supports

those – some solutions have built-in features while others offer integration with

popular tools. Whatever your preference, establish your team’s needs up front to

avoid being caught off guard when the solution you’ve chosen doesn’t support

an integral component of their workflow.

Cost
What is your budget and how do you want to spend it? Opting for an open source

solution rather than a commercial one can seem like a shortcut to savings, and

many organizations choose open source for this very reason. It's also critical

though to consider whether the features that are included and support offered

are sufficient for your needs, and will scale as your organization grows. Some

enterprise owners find it reassuring to have access to priority support should

they need it, or special features required for larger organizations (such as

approvals, file locking and repository mirroring).

https://about.gitlab.com/solutions/issueboard/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git
https://about.gitlab.com/gitlab-ci/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git
http://get.gitlab.com/code-review-webinar/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git
https://about.gitlab.com/2017/04/04/why-collaboration-tools-matter/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git
https://about.gitlab.com/2017/03/03/why-choose-open-source/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git

The most important thing to remember when migrating from a centralized

system to Git is that it requires a new way of thinking about version control, and

the old way of doing things simply will not fit into your new system. Luckily, the

versatility of Git allows for multiple types of workflows, so you and your team

can decide what’s best for you.

The initial migration to Git can a couple of days or a couple of months depending

on your migration strategy. To reduce complexity, a complete transition is

recommended. However, for organizations with many teams and projects, you

can also start by migrating one team or project at a time.

Getting started with Git doesn’t have to be intimidating. There are lots of tools

out there that can help with the migration and it’s relatively simple to get your

team up and running on GitLab.

Have questions or need more information?
We’ve got you covered! Get in touch.

GETTING STARTED

https://docs.gitlab.com/ee/gitlab-basics/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git
https://docs.gitlab.com/ee/gitlab-basics/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git
https://about.gitlab.com/sales/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git

ABOUT GITLAB
Since its founding in 2014, GitLab has quickly become the leading self-hosted

Git repository management tool used by software development teams ranging

from startups to global enterprise organizations. GitLab has since expanded

its product offering to deliver an integrated enterprise-grade source code

management system with built-in continuous integration and continuous

delivery tooling.

GitLab helps teams eliminate unnecessary steps from their workflow and focus

exclusively on building great software. Today, more than 100,000 organizations,

including NASA, CERN, Alibaba, SpaceX, O'Reilly, IBM and ING, trust GitLab

to bring their modern applications from idea to production, reliably and

repeatedly.

Ready to get started?

Start a free GitLab Enterprise Edition trial today!

Start Your Free Trial

“It made a big difference for us to have a central point for
software projects that we could manage by ourselves and have
all the tooling in one place. I think using GitLab has also led to

improvements in our workflow and collaboration.”

— MIKAEL VAPPULA, IT MANAGER AT VAADIN

WHY VAADIN CHOSE GITLAB

https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git
https://about.gitlab.com/2016/12/05/why-vaadin-chose-gitlab/?utm_medium=pdf&utm_source=whitepaper&utm_campaign=moving+to+git

